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FOREWORD 

This report was prepared by the Plastics and Composites Branch, 
Nonmetallic Materials Division, Air Force Materials Laboratory.    The 
work was initiated under Project 7340,  "Nonmetallic and Composite 
Materials,11 Task 734003,  "Structural Plastics and Composites," and 
was administered under the direction of the Air Force Materials 
Laboratory, Air Force Systems Command,  Wright-Patter son Air Force 
Base, Ohio; Dr.  J.  M.  Whitney of the Plastics and Composites Branch 
(LNC) was the Project Engineer. 

The report covers work conducted January 1971 through March 1972 

This technical report has been reviewed and is approved. 

T.SJ. REINHART, Jfr. 
Acting Chief,   Plastics and 

Composites Branch 
Nonmetallic Materials Division 
Air Force Materials Laboratory 
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ABSTRACT 

Extensive use of energy methods in conjunction with classical 
beam mode functions has been used to obtain approximate solutions to 
homogeneous, or symmetrically laminated,  anisotropic plate problems. 
Because of the existence of cross-elasticity bending stiffness terms, 
the beam functions do not satisfy the natural boundary conditions.   As 
a result, bending moments and stresses, which are of practical interest, 
may converge to the wrong solution or may not converge at all.    Further- 
more, bending deflections, buckling loads, and fundamental vibration 
frequencies converge very slowly for highly anisotropic materials.    This 
report shows that improved results can be obtained for anisotropic plates 
which contain strong cross-elasticity effects by using a classical Fourier 
analysis which satisfies both the geometric and natural boundary 
conditions.    Numerical results are presented for bending under transverse 
load, buckling under biaxial compression and pure shear, and natural 
frequencies of flexural vibration.    Both homogeneous and laminated 
plates are discussed. 
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NOTATION 

a.b Plate length and width 
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Elements of anisotropic bending stiffness matrix, 
Q..h^/12 for homogeneous plates 

Plate thickness 

Distance from plate mid-plane to interface between the 
k and k + 1 layers of a laminate 

Number of layers in a laminated plate 

Distributed bending moments 

Distributed twisting moments 

Distributed normal stress resultants 

Distributed shear stress resultant 

Integral of the density through the plate thickness 

Distributed normal load over plate surface 

Elements of the anisotropic reduced stiffness matrix 

Reduced stiffnesses rleative to x',y' axes 

Time 

Plate deflection 

Circular frequency 

Normal stress 

Shear stress 

Angle of fiber axis,  x'.   relative to x axis of plate 

IV 
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INTRODUCTION 

With the development of high performance fiber reinforced composite 

materials for structural applications has come an increased interest in 

solutions to anisotropic plate problems.    A large number of solution» exist 

for bending, buckling,  and free vibration of specially orthotropic rectangular 

plates in which the principal elastic axes are parallel to the sides of the 

plate.    Many of these solutions are summarized in References [1]  - [3], 

In most structural applications, however,  fiber reinforced composites are 

constructed of unidirectional plies in which the fiber axis is oriented at an 

angle 8 to the x axis as illustrated in Figure 1.    For such a composite 

symmetrically laminated about th'i mid-plane,  the bending response is 

governed by the flexural equation of a homogeneous anisotropic plate [ 4, 5], 

including the cross-elasticity bending stiffness terms D., and D  ,. 

Energy methods have been used [ 6, 7, 8, 9, 10] in conjunction with 

classical beam mode functions to obtain approximate solutions for bending, 

buckling, and vibration of homogeneous,  or symmetrically laminated, 

anisotropic plates with various boundary coriditions.    Extensive numerical 

results for rectangular plates appear in Reference [ 3].    Because of the 

existence of cross-elasticity bending stiffness terms,  however,  the beam 

functions do not satisfy the natural boundary conditions.    Recent work by 

Fräser and Miller [11] involved the use of a generalized Ritz method \n 

conjunction with a Fourier series and Lagrange multiplier technique to 

obtain an upper and lower bound on buckling loads for homogeneous aniso- 

tropic plates.    Again,  as in the previously cited literature, the natural 

boundary conditions were not satisfied. 

i 
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Aahton [ 10] has shown that unless the natural boundary conditions are 

satisfied, bending moments,   shear resultants, and edge reactions, which 

are of particular interest in bending problems, rr?y converge to the wrong 

solution or may not converge at all.    Furthermore,  for highly anisotropic 

materials bending deflections, buckling loads, and free vibration frequencies 

converge very slowly. 

It is the purpose of the present paper to show that, improved results 

compared to existing energy solutions can be obtained for anisotropic plates 

having strong cross-elasticity effects by using a classical Fourier analysis 

which satisfies both the geometric and natural boundary conditions.    An 

exact solution to the governing equations is obtained in the form of a 

double sine series plus a double cosire seilcs.    A procedure similar to 

that used by Gr^en [ 12] and by Fletcher and Thorne [13] on isotropic 

plates is employed to exactly satisfy both the geor~etric and natural boundary 

concitions.    Although the Fourier method is applicable to any of the classical 

boundary conditions, the present work considers plates which are cither 

simply-supported on all edges,  or simply-supported on two opposite edges 

with the adjacent edges clamped.    These boundary conditions are sufficient 

to show improved results compared to existing energy solutions.   The 

Fourier approach has been recently applied to anisotropic rectangular plates 

having all edges clamped [ 14].    Since all of the proper boundary conditions 

were geometric in nature,  excellent agreement with existing Ritz solutions 

was obtained.    This procedure has also beer applied to unsymmetrically 

larrr-^tcd anisotropic plates.   [15,16].    The laminating sequence,  however, 
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was such that the D., and D?, cross-elasticity bending stiffness terms 

vanished.    This simplification lead to displacement and stress function 

solutions whi^h could be expressed in terms of a single function in the form 

of a double trigometric series. 

ANALYSIS 

For the purpose of completeness it is appropriate to briefly review the 

Fourier method of solution as applied to the anisotropic plate equation. 

Denoting partial differentiation by a comma, the governing equation for the 

bending and flexural vibration of a homogeneous, or symmetrically 

laminated, plate with pre-buckling  inplane loads included is of the 

form [1,2,3] 

D_. w, + 4D_, w, +  2(D._  +  2D, Jw, 
11     'xxxx 16      xxxy 12 66       xyyy 

+ 4D_ w, +D.0w, + Pw,^ (1) 
2f      xyyy 22      yyyy tt 

=  N   w,        +  2N      w,        + N   w, 
x       xx xy       xy y      yy 

For laminates symmetrically oriented about their mid-plane [ 3,4,5] 

D.. =   2  > I Q.. z^dz (2) 

where K =   L/2fora laminate having an even number of layers and 

(L +  1) /2 for a laminate having an odd number of layers. 



Bending Under Transverse Load 

Consider a rectangular plate which lies in the region 0 <_ x <_a, 0 <_y,<b 

(Fig. 1) and subjected to a general transverse load q which can be presented 

by the Fourier series 

CO CO 

q(*,y) = 2,   I   V8inir8mb (3) 

m= 1   n= 1 

(0 < x < a,  0 < y < b) 

A solution to eq. (1). in the absence of inplane forces and inertia, of the form 

w(x,y)   =  w^x.y)   + w2(x,y) (4) 

is sought in the region 0 < x < a,  0<y<b where w   and w   independently 

satisfy the geometric boundary conditions.    It is assumed that 

co co 
rrnrx mry 

oin "  sin    - * 
mn a b 

m= 1   n= 1 
■. ■ 1.1 w    =    >       \      A       sin """"      sin 

CO             CO 

W.=        > > Brv,r,COS"^ COS"T mn a o u-l 1 

Z X   a
2 

m=l  n=l 

(0 < x < a,  0 <_y <b) 

(5) 

m=0   n=0 

Differentiating w    term-by-term with respect to x twice yields 

Z   2 
v       v-    «1 IT A mirx mry , 

w =    -   \     X      =— A        sin sin   , (6) 
l,xx Z,     /.        -2 mn a b 



Since eq. (6) is not valid on the edges x = 0, x= a, further differentiation 

with respect to x cannot be accomplished term-by-term [ 12], Assuming 

w. can be represented by a cosine-sine series, partial integration leads 

to the result 

m= 1  n= 1 

mirx    .    niry 
+ ft     b      \        cos  sin   r rm   n a b 

where 
.b 

a    = -r—    I       [w.       (a,y)   - w,     (U,y) ] sin-^ dy 
n      ab      J       L    1, xx      7 xxv     7   J b 

0 
/ '•., 

n  "  ab J       [Wl,xx(ay)   + W'xx(°'y)1 ""^ dy 

a      =   1. m even 
m 

-   0, m odd 

ft      =   0, m even 

=   1, m odd 

(7) 

A similar procedure applied to w,        . w0     . w_     , w^ ,   and w_ 
l,yy       2,x       2,y       2, xxx 2, yyy 

leads to ten more sets of constants: c    ,  d     associated with w. along the 
mm 1,yy 

edges y =  0, b; e  ,  f   associated with w_      along the edges x = 0, a; g    , h 
n     n <£,x m      ni 

associated with w        c-long the edges y =   0, b; i  , j    associated with 
2,y n     n 
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w^ along the edges x = 0. a; and k   ,  1     associated with w_ along 
2, xxx • * mm 2,yyy 

y = 0, b.   All other desired derivatives can be obtained through term-by-term 

differentiation.    Substituting the appropriate derivatives of w   and w   along 

with eq.  (3)  into eq. (1) ,  equating like Fourier coefficients, and solving the 

resulting algebraic equations yields A      ,  B    .,  B^  , and B       in terms of 
mn      mu       On mn 

the coefficients a  , b  , c    ,...,1        The latter set of coefficients along 
n      n      m m 

with B_ are determined such that the boundary conditions are satisfied. 
00 7 

Equation (1) also yields a relationship between i   and k 

For a plate having all edges simply- supr.^ted  the   following 

classical conditions,  designated SS,are applicable. 

at x --  0 and a: 

w =  M    =   - D.. w,        - 2D,, w,        - D_ _ w,        =0 
x 11       xx 16       xy 12       yy (8) 

at y =   0 and b: 

w=M    =-D..w,        -  2D0, w,       - D0_ w,        =0 
y 12       xx 26       xy 22       yy 

The moment,  or natural,  boundary conditions lead to the following 

relationships 

\i) 

Dllb                , Dlib       K e    -  rr  a  ,  f     =  —   b 
n       2DlZnu      n      n 2D    nt      n 

lb lb 
n 4  0 (10) 

D22Rb D22Rb       d 
gm "'   2D_,miT   Cm'     m "   2D-,mir        m 

c,b do 
mM (11) 

Thus eqs.  (8)   and (9)  yield an infinite set of simulta.neous equations for 

the constants BÄ„,  a  , b  ,  c    ,  d    ,  ert,  f   ,  g_, h      i   , j   ,  1     ,  and 1    . 
00     n     n     m     m      0      0      0      0     n   J n     m m 

Truncation of the system at m  -   M jind n =  N leads to a 4(M  + N  +  2)   system 
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of equations.    This system can be separated into four sets of equations by 

ranging m and n over even or odd integers.    Any desired degree of 

convergence can be obtained by taking appropriate values of M and N. 

For the purposes of this paper it is useful to also consider the combined 

boundary conditions,  designated CS, where the edges x = 0, a are clamped 

and the edges y = 0, b are simply-supported.    Thus, at x = 0 and b: 

w = w,x =  0 (12) 

and the conditions along the edges y = 0 and b are those of eq. (9) . 

The slope w        vanishes along the edges x = 0 and b if, 
1, x 

>   Q     mA        =  0,      Y   z     mA        =0 (13) 
Z_i    m        mn /_,     m        mn 
m m 

for all n = 1, 2, ,   .   .   . , 

while w        vanishes along the same edges if 
6, x 

e    =  f    = 0 (n .  0,1,2 ) (14) 
n n 

The previous system of eqs.  for SS conditions can now be applied to the 

CS case by replacing eqs. (10)  and the moment portion of eq.  (8) with (14) 

and (13) ,  respectively. 

Using contracted notation the plate stresses and moment resultants 

are calculated form the constitutive relations 



(i,j  «   1,2,6) (15) 

M.     =   D.. K. 

where or.   =  ir  ,  <r, r  a  .  «r.   =  ir    , and the curvatures, K., and moments, 
1 x      2 y      6 xy l 

M.t are defined in an analogous manner.    The curvature-displacement 

relations are those of classical homogneous plate theory 

K     -   - w,     ,  K     =   - w,     ,  K       =   - 2w, 
x xx      y yy      xy xy 

(16) 

Buckling and Flexural Vibration 

Consider the case of uniform membrane loading N , i. e. , 

N    =   -K.N.,        N    =   -K_N_,     N       =  K N 
x 10 y 20 xy 30 

(17) 

N   >0 

where K.,  K   and K   are known constants.    Solutions to eq.  (1)  with 
J. & 3 

q =   0 are of the form 

w  -  W(x, y) e 
i<ot 

(18) 

where w is the natural vibration frequency and t denotes time.    Substituting 

eq.  ^18)  into eq.  (1)  and taking eq.  (17)  into account yields 

DlflW, + 4D,,W, +  2(D...  +  2D,,)  W + 4D..W, 
11      xxxx 16      xx::y 1 c 66        xxyy 2b xyyy 

(19) 

+  D_W, -  P(0  W   -  K.NnW,        +  2K.N.W,        + K,NftWf        =   0 
22      ww 1   0      xx 3   0      xy 3   0      vv xy yy 



Solutions to eq. (19)  can be obtained by assuming 

W(x,y)   =  Wj (x,y)   + W2(x,y) 

where W, and W    are of the same form as w. and w?,  respectively. 

Following the same procedure as in the previous section leads to four sets 

of homogeneous equations.    Each set corresponds to a different mode shape. 

Natural vibrat;^»n frequencies are obtained by letting N    =   0, while static 

buckling becomes the special case of vanishing w.    Proper values of N 

and a) are determined by allowing the determinant of the coefficient mat/ix 

in each of the four groups of equations to vanish. 

COMPARISON TO EXACT SOLUTION 

An exact solution is available [ 17] for the bending deflection of a 

simply-supported anisotropic plate subjected to a uniformly distributed 

load q   and having the following elastic stiffness properties 

22 22 w22       w22 

This problem has been solved by the Fourier series method (FS)  with 

M  =  N =   1,3,5,7,9,11,  and 13.    Comparison of the maximum deflection 

for increasing terms with the exact solution (ES)  is shown in Fig.   2.    The 

maximum deflection is available from Reference [ 10] for the Ritz method 

(RS) , and is also shown in Fig.   2 for M =  N -   1, 3, 5, 7,  and M =   9,  N =   8. 

Since the Fourier series method satisfies all of the required boundary 



conditions, more rapid convergence is obtained compared to the energy 

approach in which only the geometric boundary conditions are satisfied. 

It should be noted, however, that direct comparison of the Fourier method 

and the Ritz method is difficult as given values of M and N lead to a different 

number of non-vanishing terms in the series representation of the deflection 

for the two approaches.    Because of the symmetry of a uniform load,  for 

example,  M  =  N =   7 yields 25 non-zero terms in the Ritz method,  while 

only 16 non-zero terms appear in the Fourier solution. 

DISCUSSION 

In the work by Ashton [ 10],  it was shown that the rate of convergence 

for simply-supported anisotropic plates employing the Ritz method in 

conjunction ^ith a double sine series was dependent on the anisotropy ratio 

Q'./Q' Thus,  for highly anisotropic materials such as graphite-epoxy 

the energy approach will provide a very slow converging solution for 

simple-support boundary conditions.    This is illustrated in Fig.   3 for a 

single-ply composite subjected to a uniform transverse load and having 

the following properties with respect to the material symmetry axes 

Q' Q' Q' 
-f±  =   25,  -i£a   0.25,   ^ =   0.5 (21) 
W22 w22 w22 

These are typical properties of a high modulus graphite-epoxy composite. 

The maximum deflection is shown for a square plate as a function of fiber 

orientation   G.    Fourier series results are based on M =  N =   13, while 

10 
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the Ritz solution is based on M =  N =   7.    In the case of the energy method 

this is the maximum number of terms available in the work of Ashton and 

Waddoups [ 6].    The difference between the Fourier solution and the energy 

solution is a maximum at orientations for which the D,z and Dn/ cross- 
lo cb 

elasticity terms have the greatest effect.    Convergence of the energy method 

is immediately improved when two sides are clamped as also illustrated in 

Fig.   3.    This improvement is due to the fact that the boundary condiuons 

are all satisfied on the clamped side.    For all sides rigidly clamped the 

Fourier method and the energy method both converge rapidly [ 14], 

In Fig. 4, the bending moment across the centerline y =  b/2 is shown 

o 
for the 45    oriented simply-supported plate of Fig.  3.    It is interesting 

to note that the energy solution does not seem to be converging to the 

natural boundary condition at x =   0 and a.     In particular, the bending 

moment M   is increasing as it approaches the boundary rather than vanishing. 

Even though the proper bending deflections can be obtained without the 

natural boundary conditions being satisfied, the same is not necessarily 

true for functions such as bending moments which depend on partial 

derivatives of the deflection function.    For the case of simple-supports it 

is very difficult to chose functions in conjunction with the Ritz method 

which will satisfy the natural boundary conditions.    In particular,  due to the 

existence of D  , and D  , cross-elasticity terms,  the moment boundary 
16 CD 

conditions cannot be satisfied by a set of assumed functions in the separable 

form [ 18]. 

11 



I   2    x*(x)Vy) (22) w = 

m       n 

This conclusion is based on the assumption that all desired derivatives of 

eq.  (22)  can be obtained from term-by-term differentiation.    It is also 

anticipated that similar difficulties would be encountered with finite element 

techniques which are based on principles of minimum potential energy. 

The convergence of eigenvalve type problems is qualitatively similar 

to the maximum deflection results as illustrated by the buckling and vibration 

o 
solutions in Tables I and II for a 45    oriented simply-supported square plate 

having the properties of eq.  (21) .    Biaxial compression (K. = K    = 1,  K. = 0) 

and pure shear (K. = K    = 0,  K    = 1)   are both shown. 

In general,  for a laminated plate of practical construction the magnitude 

of the D L and D   . bending stiffness terms will decrease with an increase 

in the number of plies.    Consider,  for example,  a symmetric angle-ply 

laminate (   + 9,   .   .   .,   - 9,   - 9,   .   .   .,   +9 stacking frequence) .    The 

cross-elasticity bending stiffness terms are of the form 

h3Q   <+e) h3 Q A^) 

D16  = —IE    '     D26  = —4L  (23) 

while the remaining bending stiffness terms are independem of the number 

of plies.    Thus,  the effect of cross -elasticity bending stiffness terms is 

less severe in a laminated plate.    This is illustrated in Table III where the 

deflection and bending moment,  M  ,  at the center of a *i layer simplv- 

o o o o o 
supported ± 45    (+45   ,   - 45   ,   - 45   ,  +45  )  laminate are tabulated fo~ 

12 



increasing values of M and N.    Unidirectional ply properties are those of 

eq.  (21) .     The difference between the Fourier solution and the Ritz 

solution for plate deflection is much less than in the case of a singl». layer 

+ 45    plate.    It should be noted, however, that the bending moyfent as 

determined by the Ritz method displays the same erratic behavior previously 

noted by Ashton [10] lor a homogeneous anisotropic plate.    In particular, 

the bending moment at the center seems to be Oa  illatxAig about a value 

close to the results given by the Fourier solution for M =  N =   13. 

Furthermore, the amplitude of the oscillation s .cms to become larger with 
i 

increasing values of M and N,  strongly  suggesting that M    does not converge. 

Further evidence suggesting such a conclusion is illustrated in Figure 5. 

The distribution of M   across the center of the plate according to the Ritz 

solution for M =  N =   3 does not look too unreasonable compared to the 

Fourier solution.    For M -  N =  7, however, the Ritz method yie.'ds results 

which are rather horrifying. 

It should also be noted that the Fourier solution yields an oscillating 

convergence for M    at the center of the plate.    A cursory examination of 

Table III,  however,   reveals that the oscillations damp out rapidly with 

increasing values of M and N. 

CONCLUSIONS 

Numerical results show that a classical Fourier analysis can yield 

improved solutions for homogeneous and symmetrically laminated anisotropic 

plates having strong cross-elasticity bending stiffness terms compared to 

13 
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existing solutions obtained by energy methods.    This improvement is due 

to the fact that the Fourier solution satisfies both the geometric and natural 

boundary conditions, while the energy method in conjunction with classical 

beam mode functions satisfies only the geometric boundary conditions. 

Convergence of the Ritz solutions for deflections, buckling loads,  and 

vibration frequencies seem to be quite slow for highly anisotropic plates 

in which all four edges involve natural boundary conditions.    It is quite 

questionable, however, whether functions,  such as bending moments, which 

involve derivatives of the plate deflection converge at ail. 

The Fourier series solution appears to provide a conser/ative solution 

for the results presented.    In particular, bending deflections are larger 

than the exact solution, while buckling loads and fundamental vibration 

frequencies are low compared to the energy solution which is an upper bound. 
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TABLE I 

Buckling of 45    Simply «Supported Plate, a = b 

2           3 
N b  /Q»   h     -  Biaxial Compression (K   = K, = 1, KL = 0) 

M              ! N Fourier Analysis Reference 7 

1 

3 

5 

7 

9 

11 

13 

1 

3 

5 

7 

9 

11 

13 

6.763 

8.115 

8.318 

8.418 

8.481 

8.521 

8.556 

21.438              j 

13.013              j 

11.565              ■ 

11.060             j 

N b2/Q^h3   - Uniform Shear   (r^  =   K2 --  0,   K^ =   1 ) 

1 

3 

5 

7 

9 

11 

13 

1 

3 

5 

7 

|            9 

11 

13 

12.121 

13.309 

J3.567 

13.702 

13.786 

13.843 

13.884 

' JO 

27.953 

18.022             1 

17.122 
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TABLE II 

Fundamental Vibration Frequency of 45 

Simply-Supported Plate, a =  b 

ub2(p/Q'2h3)1/2 

M N Fourier Analysis Reference 7 

1 

3 

5 

7 

9 

11 

13 

1 

3 

i            i> 

7 

9 

11 

13 

13.277 

14.231 

14.415 

14.496 

14.544 

14.577 

14.600 

20.571 

17.301 

16.737              ] 

16.428              I 
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TABLE III 

Bending of Simply-Supported ±45    Laminate 

(+45°,   -45°,   -45°,  +45°) ,  a = b, q = q^ 

w(a/2,b/2)Q22h3/qob4x 103 M (a/2,b/2)/q b2 x 102 

M N FS R S FS R S               | 

1      l 
3 

5 

I      7 

9 

11 

13 

1 

3 

5 

7 

9 

11 

13 

5.1838 

4.9676 

4.8849 

4.8571 

4.8307 

4.8193 

4.8078 

3.8310 

4.3850 

4.3947 

4.4910 

4.7785 

4.0025 

4.2311 

4.1488 

4.1716 

4.1533 

4.1596 

4.1854          j 

4.2457 

3.6911          j 

4.2633 
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FIGURE 1. Coordinates 
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FIGURE 2,  Maximum Deflection for 
I ncreasing Number of Terms 
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FIGURE 3. Deflection vs. Orientation, Uniformly Loaded Plate, a -b 
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